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Installation Options




Installation options

* Build from source

 See instructions at https://github.com/openfheorg/openfhe-python

* Docker
* Build the image from scratch, OR,

* Pull the image from Dockerhub at https://hub.docker.com/r/openfheorg/openfhe-docker

* OpenFHE repositories (openfhe-development and openfhe-python) are cloned to /

* Repositories with Python examples can be cloned to /workspace
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Comparing and
Contrasting PPML
Methods




DISTRIBUTED LEARNING

Definition: A system of interconnected learning
models that train on distributed datasets.

Key Features: Scalability, Privacy, Decentralization.

Applications: Large-scale machine learning,
geographically dispersed data, collaborative
research.
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FEDERATED LEARNING

Definition: A machine learning approach where a
model is trained across multiple decentralized
devices or servers holding local data samples,
without exchanging them.

Key Features: Privacy preservation, Reduced
communication costs, Collaborative learning
without sharing raw data.

Applications: Smartphone keyboard prediction,
Healthcare data analysis, Collaborative fraud
detection.
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SPLIT LEARNING

Definition: A collaborative machine learning
technique where the model training is split

between the client device and a central server. o o COOTAnating Server
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Key Features: Reduced data transfer, Privacy
protection, Efficient use of bandwidth.
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Applications: Edge computing, loT devices,
Privacy-sensitive industries.
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DIFFERENTIAL PRIVACY

Definition: A technique that adds 'noise' to data to
prevent the disclosure of individual information
while still allowing for accurate aggregate analysis.

Privacy Module
Key Features: Privacy guarantee, Robust to g
post-processing, Quantifiable privacy loss. S [T st [ udeetstore |/
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Source:

https://cloudblogs.microsoft.com/opensource/2020/05/19/new-differential-privacy-platform-m
icrosoft-harvard-opendp/
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SECURE MULTI-PARTY COMPUTATION

] Participants Secret Sharing
Definition: A cryptographic protocol that enables “H™
parties to jointly compute a function over their >

inputs while keeping those inputs private.

Computing Parties

[\

Key Features: Data confidentiality, Computation
integrity, Collaborative computation without \
mutual trust. BN = B (iniermediate)

Results

Final Results

Applications: Joint financial analysis,
Privacy-preserving scientific research, Secure
voting systems.

Source:
https://www.researchgate.net/figure/Secure-multi-party-computation-Each-participan
t-shares-a-separate-different-secret-with_fig2 343179246
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SECURE ENCLAVES/TRUSTED EXECUTION ENVIRONMENT

Definition: Secure Enclaves, also known as Trusted Execution Environments (TEE), are protected areas
within a processor or a larger computing system. They ensure that sensitive code and data are
stored, processed, and protected in a secure environment.

Key Features:

* |solated Execution: Code within the TEE runs in an isolated environment to prevent unauthorized
access or tampering.

* Data Encryption: Data is encrypted in the TEE, ensuring confidentiality and integrity even if the
system is compromised.

*  Remote Attestation: Enables a third party to verify the enclave's integrity and the authenticity of
the software running inside.

* Access Control: Only authorized code can run inside the TEE, preventing malicious operations.

Appllcatlons
Secure Mobile Payment Processing: Protects payment information from being exposed to the rest
of the system.

* Confidential Computing: Allows sensitive operations like personal data processing or proprietary
algorithms to run securely.

*  DRM and Content Protection: Ensures that digital rights are enforced by only allowing access to
content under secure conditions.
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Spinning Up In
Homomorphic
Encryption for ML




WHAT IS HOMOMORPHIC ENCRYPTION?

* Encryption protocol with one extra operation: Evaluation
* Allows for computation on encrypted data
* Enables outsourcing of data storage/processing

* How is FHE related to symmetric and public key encryption?

* FHE schemes provide efficient instantiations of post-quantum public-key and symmetric-key
encryption schemes

* Homomorphic encryption can be viewed as a generalization of public key encryption

* Key milestones in the history of homomorphic encryption
* Rivest, Adleman, Dertouzos (1978) -- “On Data Banks and Privacy Homomorphisms”
* Gentry (2009) -- “A Fully Homomorphic Encryption Scheme”
* Multiple HE schemes developed after 2009
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EXAMPLE OF FHE WORKFLOW
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FHE vs OTHER SECURE COMPUTING APPROACHES

| e wec | Seaure Enches/SoX

Performance Compute-bound Network-bound Close to plaintext
Privacy Encryption Encryption / Non-collusion Trusted Hardware
Non-interactive v X v
Cryptographic security v v ) 4

(known attacks)

Hybrid approaches are also possible, e.g., MPC + FHE
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TYPICAL FHE OPERATIONS

Encrypt bits and perform logical AND, OR, XOR operations on the ciphertexts.
* OAND1—0,00R1—1,1X0OR1—0

* Encrypt small integers and perform addition and multiplication, as long as the result does not exceed some fixed
bound, for instance, if the bound is 10000

* 123 +456 — 579, 12 * 432 — 5184, 35 * 537 — overflow

* Encrypt 8-bit unsigned integers (between 0 and 255) and perform addition and multiplication modulo 256
128 +128 —»0,2* 129 — 2

* Encrypt fixed-point numbers and perform addition and multiplication with the result rounded to a fixed precision, for
instance, two digits after the decimal point

© 12.42 +1.34 — 13.76, 2.23 +5.19 — 11.57

 Different homomorphic encryption schemes support different plaintext types and different operations on them.

[l openFHE




SOME EXAMPLES OF REAL-SCALE FHE APPLICATIONS

* Private information retrieval
* https://eprint.iacr.org/2017/1142, IEEE S&P 2018

* Private set intersection
e https://eprint.iacr.org/2017/299, ACM CCS 2017
e https://eprint.iacr.org/2018/787, ACM CCS 2018
* https://eprint.acr.org/2021/1116, ACM CCS 2021

* Genome-wide association studies based on chi-square test and logistic regression
training
* https://eprint.iacr.org/2020/563, PNAS 2020
* Logistic regression training
e https://eprint.iacr.org/2018/662, AAAI Conference on Al 2019

* Neural network inference (ResNet-20 to ResNet-110)
* https://eprint.iacr.org/2021/1688, ICML 2022
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MAIN CONCEPTS

Homomorphic: a (secret) mapping from plaintext space to ciphertext space that preserves arithmetic
operations.

Mathematical Hardness: (Ring) Learning with Errors Assumption
* Every image (ciphertext) of this mapping looks uniformly random in range (ciphertext space).

Security level: the hardness of inverting this mapping without the secret key
* Often estimated as a work factor.
« Example: 128 bits — 2?8 operations to break using best known lattice attack

Plaintext: Elements and operations of a polynomial ring (mod x" + 1, mod p).
* Example: 3x> + x* + 2x3 + ...
* For all practical purposes, you can think of it as a vector of (small) finite integers
* Ciphertext: elements and operations of a polynomial ring (mod x"+ 1, mod q).
* Example: 7862x° + 5652x* + ...
 For all practical purposes, you can think of it as a vector of (larger) finite integers

* Noise: random integers with Gaussian distribution, which are “added” to the plaintext to achieve the
desired security level based on Ring Learning With Errors

[l openFHE




FRESH ENCRYPTION

Plaintext mod p + + Initial Noise
(removable mod p)

Mask mod q
(removable with the Ciphertext
secret key)

* Horizontal: each coefficient in a polynomial or in a vector.
* Vertical: size of coefficients.

* |nitial noise is small in terms of coefficients’ size.
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AFTER SOME COMPUTATIONS

Result mod p + + =
Current Noise
Mask mod g (removable mod p)
(removable with the Ciphertext
secret key)

* Horizontal: each coefficient in a polynomial or in a vector.
* Vertical: size of coefficients.

* |nitial noise is small in terms of coefficients’ size.
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NOISE OVERFLOW (RESULTS IN DECRYPTION FALURE)

Result mod p + +

Mask mod q
(removable with the Too Much Noise Ciphertext
secret key)

Horizontal: each coefficient in a polynomial or in a vector.
Vertical: size of coefficients.

Initial noise is small in terms of coefficients’ size.
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BOOTSTRAPPING (NOISE REFRESHING PROCEDURE)

Evaluates the decryption circuit homomorphically and resets the noise.

Plaintext mod p + + Refreshed Noise | =
(removable mod p)

Mask mod q
(removable with the Ciphertext
secret key)

* Horizontal: each coefficient in a polynomial or in a vector.
* Vertical: size of coefficients.

* Initial noise is small in terms of coefficients’ size.
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TYPES OF HOMOMORPHIC ENCRYPTION

* Partially homomorphic encryption (weakest notion)
* supports only one type of operation, e.g. addition or multiplication.

* Somewhat homomorphic encryption schemes
* can evaluate two types of gates/operations, but only for a subset of circuits.

* Leveled fully homomorphic encryption

* supports more than one operation but only computations of a predetermined size (typically
multiplicative depth); supports much deeper circuits than somewhat homomorphic encryption

* Fully homomorphic encryption

* supports arbitrary computation on encrypted data; it is the strongest notion of homomorphic
encryption.

[l openFHE
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CLASSES OF HOMOMORPHIC SCHEMES

1. Modular (Exact) Integer Arithmetic: BGV / BFV

* Plaintext data represented as vectors modulo a plaintext modulus “t” (or their vectors)
* Computations expressed as vectors arithmetic mod t

2. Functional (Programmable) Bootstrapping: DM (FHEW) / CGGI (TFHE)

* Plaintext represented as integers/Boolean values
» Supports evaluation of arbitrary functions using Look-Up Tables (LUTs)
* Computation for each integer is evaluated separately

3. Approximate Number Arithmetic: CKKS

 Plaintext data represented as vectors of real numbers (or complex numbers)
* Compute model similar to floating-point arithmetic but dealing with fixed-point numbers

il OpenFHE




MODULAR (EXACT) INTEGER ARITHMETIC APPROACH

* Features:

* Efficient SIMD computations over vectors of integers (using batching, also called CRT
packing)

* Fast high-precision integer arithmetic
* Fast private information retrieval/private set intersection/secure database query
* Leveled design (often used without bootstrapping)

* Main schemes:
* Brakerski-Vaikuntanathan (BV) [BV11] - foundation for other schemes
* Brakerski-Gentry-Vaikuntanathan (BGV) [BGV12]
* Brakerski/Fan-Vercauteren (BFV) [Bral2, FV12]
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FUNCTIONAL (PROGRAMMABLE) BOOTSTRAPPING APPROACH

* Features:
* Fast number comparison

Initially proposed for Boolean circuits

Supports arbitrary functions by evaluating LUTs
Fast bootstrapping (noise refreshing procedure)
Does not support batching/CRT packing

* Related schemes:
* Gentry-Sahai-Waters (GSW) [GSW13] — used in bootstrapping
* Fastest Homomorphic Encryption in the West (DM/FHEW) [DM15]
* Fast Fully Homomorphic Encryption over the Torus (CGGI/TFHE) [CGGI16,CGGI17]
* Efficient FHEW Bootstrapping with Small Evaluation Keys [LMCKDEY23]
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APPROXIMATE NUMBER ARITHMETIC APPROACH

* Features:
* Efficient SIMD computations over vectors of real numbers (using batching)
* Fast polynomial approximation
* Relatively fast multiplicative inverse and Discrete Fourier Transform
* Deep approximate computations, such as logistic regression learning

* Leveled design, but also used with approximate bootstrapping in many ML
applications

* Best amortized bootstrapping time

* Selected schemes:
* Cheon-Kim-Kim-Song (CKKS) [CKKS17]
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SELECTING SECURITY PARAMETERS

The ciphertext dimension (degree of polynomial) should be chosen according to the
security tables published at HomomorphicEncryption.org

distribution n security logq usve dec dual
level

(-1, 1) 1024 128 27 131.6 160.2 138.7

192 19 193.0 259.5 207.7

256 14 265.6 406.4 293.8

2048 128 54 129.7 144.4 134.2

192 37 197.5 233.0 207.8

256 29 259.1 321.7 273.5

096 128 109 > 128.1 134.9 129.9

197 75 194.7 212.2 198.5

256 58 260.4 292.6 270.1

8192 128 218 128.5 1315 129.2

192 152 192.2 200.4 194.6

256 118 256.7 273.0 260.6
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THREE MOST COMMON WAYS TO DO ENCRYPTED ML USING FHE

Here we focus on (supervised) learning using the models based on logistic regression, decision trees, and neural networks, i.e.,
relatively deep computations requiring bootstrapping.

1. Approximate approach based on CKKS

 Fastest for most ML applications, especially with larger problem sizes.
* Polynomial approximations should be used with care.

2. Hybrid approximate/LUT approach based on CKKS and DM (FHEW) /CGGI (TFHE)
¢ Significantly slower than approach 1 for most ML applications.
* Evaluates “tricky” non-linear functions, such as comparison, using functional bootstrapping in DM/CGGI.

3.  LUT approach based on functional bootstrapping in DM/CGGI

* Slowest option (typically by orders of magnitude compared to option 1) and does not scale well with the
problem size.

* Easiest to use in most cases.

[l openFHE




APPROXIMATE APPROACH BASED ON CKKS

* Complicated functions are approximated using polynomials
* Typically Chebyshev interpolations or similar minimax methods are used
* Evaluates functions over vectors of real numbers, e.g., a function is evaluated for 32K real numbers at once
* When building the polynomial interpolation, the input range has to be specified

* Approximate CKKS bootstrapping is used to support deep computations, such as logistic regression
training

* Approximate bootstrapping significantly increases the approximation error after first bootstrapping, but further

bootstrapping operations typically have a small effect for many ML applications (the ML computations are often
approximate in nature)

* Multiprecison CKKS (META-BTS) bootstrapping was recently proposed in hitps://eprint.iacr.org/2022/1167
(CCS’22)

* Amortized cost of CKKS bootstrapping gets as low as 1ms per real number [BMT+21]

* Inference is fast for many models, e.g., logreg inference for hundreds of samples and dozens of features
takes less than 1 second
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HYBRID APPROXIMATE/LUT APPROACH BASED ON CKKS+DM/CGGI

* CKKS is used for all polynomial/matrix arithmetic computations

* For “tricky” non-linear functions, LUT evaluation using functional bootstrapping with DM/CGGI is used
* Useful for comparisons

* Can be used for piecewise polynomial evaluation, addressing the input range issue in polynomial approximations
* Requires scheme switching from CKKS to/from DM/CGGI

* LUT evaluation is often the main bottleneck

[l openFHE




LUT APPROACH BASED ON FUNCTIONAL BOOTSTRAPPING IN
DM/CGGI

* Any deep learning algorithm can be evaluated using LUTs for non-linear functions

* The main drawback is performance
* Functional bootstrapping does not support the evaluation of a LUT over a vector of integers in a SIMD manner
LUT evaluation even for a small plaintext modulus (few bits of precision) requires 100ms or so
To evaluate an arbitrary function for a larger plaintext space, many small LUT evaluations are needed
Typically orders of magnitude slower than the approximate approach based on CKKS

Even inference takes substantial time, e.g., logreg inference for hundreds of samples and dozens of features
takes more than 10 minutes

[l openFHE




|.| I
k|
Selected Studies in PPML
using FHE




RECENT DARPA PROGRAMS

* Cooperative Secure Learning (CSL) [August 2020 — January 2022]

* Develop methods to protect data, models, and model outputs among a community of entities desiring to
securely share their information to better inform ML model development

* Enable multiple parties to cooperate for the purpose of improving each other’s ML models while assuring that
each entity’s individual, pre-existing datasets and models will remain private

» Data PRotection in Virtual Environments (DPRIVE) [January 2021 — present]
* Develop a hardware accelerator for FHE computations that will dramatically reduce the compute runtime
overhead compared to software-based FHE approaches
* Motivating applications are logistic regression training, CNN inference, and CNN training

[l openFHE




SELECTED PAPERS FOR APPROXIMATE METHOD BASED ON CKKS

* Logistic regression training
* https://eprint.iacr.org/2018/662, AAAI Conference on Al 2019
* 422108 samples over 200 features in 17 hours on a single machine

* Genome-wide association studies based on chi-square test and logistic regression training
* https://eprint.iacr.org/2020/563, PNAS 2020
* 500000 SNPs and 100000 individuals in 5.6 hours on a single machine

* ResNet-20 deep neural network evaluation
* https://eprint.iacr.org/2021/783; CIFAR-10 in 3 hours on a single server with 64 threads

* https://eprint.iacr.org/2021/1688; CIFAR-10 in 40 minutes on a single server with 1 thread; Resnet-110 for the
same setup took about 3.7 hrs
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SELECTED PAPERS FOR HYBRID METHOD

* Semi-parallel logistic regression training (GWAS)
* https://eprint.iacr.org/2019/101, BMC Medical Genomics 2020
* 10643 SNPs, 245 patients, and 3 covariates: 4 min. to 3 hrs on a single machine

* The best approaches based on the CKKS method took few minutes for the problem sizes that required few hours
for the hybrid approach

* Decision tree evaluation and K-means clustering
 https://eprint.iacr.org/2020/1606, IEEE S&P 2021

* Decision tree evaluation: for 60 internal nodes, 57 features, and 2 classification labels the runtime was about 7
seconds

* K-means clustering: for 4096 data points and 8 clusters, the runtime was 52 minutes
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MOTIVATION FOR APPROXIMATE FHE

. Goocilofor any application where we work with real numbers, e.g., where we use floating-point
numbers

* Encrypt real numbers and perform addition and multiplication with the result rounded to a
fixed precision, for instance, two digits after the decimal point

©12.42+1.34=13.76,2.23 *5.19=11.57
* The main limitation of integer homomorphic encryption (BGV/BFV) is that it requires very large
plaintext moduli to support operations over real numbers
* All computations in integer HE are performed exactly
* Integer HE rapidly becomes inefficient as further multiplications are performed
* Approximate homomorphic encryption allows dropping least si%nificant bits by rescaling the
encrypted data, similar to how it is done for floating-point numbers in practice
* Typical applications of approximate HE
* Statistical computations
Polynomial evaluation
Matrix arithmetic
Regression inference and training
Evaluation of non-linear/non-smooth functions using their polynomial approximations
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FIXED-POINT ARITHMETIC WITH RESCALING

“  Suppose we have two numbers: a = 0.125654 and b = 3.534365

“  We choose a scaling factor A that converts these real numbers into integers (like in fixed-point arithmetic)

* Inthis case, A = 10°is a good choice to maintain the same precision

“  We multiply a and b by the scaling factor A, yieldinga’=a * A =125654 and b’=b * A = 3534365

“ If we want to compute a + b, we do the following

* a'+b"'=3660019, which corresponds toa + b = a*b _ 3.660019
“ If we want to compute a * b, we do the following
* a'"*b"'=444107099710, which corresponds toa * b = ? A*Zb =0.444107099710

* We convert a * b to the original scale A by dropping the 6 least significant digits (dividing by 4), i.e.,

! !

Compute = 444107 and use it for future computations
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FIXED-POINT ARITHMETIC WITH RESCALING IN CKKS

The Cheon-Kim-Kim-Song (CKKS) scheme is the approximate homomorphic encryption implementedin
OpenFHE

* Multiple variants of the CKKS are implementedin OpenFHE, but they all share common properties and vary
only in the approximation error, performance, and usability

The fixed-point arithmetic with rescaling in CKKS has additional two features
 Binary fixed-point arithmetic, i.e., A = 2P is used instead of decimal fixed-point arithmetic

* CKKS operations introduce extra approximation error, which “erases” typically 12-25 least significant bits

The actual scaling factor in CKKS should be set to a higher value to compensate for the CKKS approximation error

By default, the CKKS implementationin OpenFHE automatically performs rescaling, similar to how
normalization and other internal adjustments are done in double-precision floating-point arithmetic

[l openFHE



MAIN DATA STRUCTURE

* The main data structure is a vector (array) of real numbers

* Many real numbers (typically between 2K and 64K) are “packed” in one vector (ciphertext)
* Let us denote the vector size as n (a power of two)

* Addition and multiplication of n real numbers can be done using a single
addition/multiplication

 Similar to Single Instruction Multiple Data (SIMD) instruction sets available on many modern
processors

* The SIMD capability should be used as much as possible to achieve best efficiency
* Rotation operation is added to allow accessing the value at a specific index of the array

* Addition, multiplication, and rotation are three primitive operations in approximate FHE
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COMPLETE LIST OF PRIMITIVE OPERATIONS

* Two-argument operations (the plaintext can represent a vector of real numbers or a single real number)
* Ciphertext-Ciphertext addition: EvalAdd
* Ciphertext-Plaintext addition: EvalAdd
* Ciphertext-Ciphertext multiplication: EvalMult
* Ciphertext-Plaintext multiplication: EvalMult
* Ciphertext-Ciphertext subtraction: EvalSub
* Ciphertext-Plaintext subtraction: EvalSub
* Unary operations
* Negation: EvalNegate
* Vector rotation: EvalRotate

* The result of all these operations is a ciphertext, i.e., an encrypted vector

* The benefit of this in practice is that mixed model-data modes can be supported, e.g.,
* Encrypted model, data in the clear

* Model in the clear, encrypted data
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DATA ENCODING

* Packing techniqgue: CKKSPackedEncoding
* Packs real numbers into a vector of size n

* Supports component-wise addition (EvalAdd) and multiplication (EvalMult)
[ 1.1] [ 4.4 ] [ 5.5] [1.5] [ 4.5 ] [ 6.75 ]
[22] +[55]=1[771,[25] * [50]= [12.50]
[ 3.3 ] [ 6.6 ] [9.9] [3.5] [ 6.1] [ 21.35 ]
* Adds a new rotation operation (EvalRotate)
* Left shift: positive index
* Right shift: negative index
* Rotations work cyclically over a vector of size n
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MAIN PARAMETERS

= Scaling factor A = 2P
* Determines the precision of computations

* Ciphertext modulus g
* Functional parameter that determines how many computations are allowed (how much noise can be tolerated)

« Oftenset implicitly using the value of multiplicative depth specified by the user

* Ciphertext dimension N
* Minimum value is computed based on the desired security level and ciphertext modulus g
* ltis also double the size of the vector of encrypted real numbers, i.e., N = 2n

* Batchsize b
« Bydefault, b = N/ 2 (full packing)
* A smaller number can be used to support sparse packing (smaller vectors) to reduce computational complexity
and noise if the application operates on smaller vectors

[l openFHE




GUIDELINES FOR SETTING SCALING FACTOR

The scaling factor A = 2P determines the precision after the radix point

* Think of this as precision in the fixed-point sense

CKKS “erases” 12-25 least significant bits (depending on the multiplicative depth)
 Each addition and multiplication may consume up to 1 bit (typically significantly less)

Hence the value of p for desired precision v is something like p = v + 20
* It can be adjusted as needed, depending on the multiplicative depth of the computation

Just like floating-point arithmetic, approximate homomorphic encryption introduces an error, and
errors from prior computations get accumulated

.

OpenFHE outputs estimated precision for a decrypted CKKS result
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GUIDELINES FOR SETTING CIPHERTEXT MODULUS

* Ciphertext modulus g is the main functional parameter that is determined by the computation
* Each arithmetic operation increases the noise, and g should be large enough to accommodate the noise from all
arithmetic operations
* From the noise perspective, multiplication is much costlier than addition
* In OpenFHE, g is automatically computed based on the multiplicative depth and scaling factor A

* Multiplicative depth is not necessarily the number of multiplications

* For example, if we need to compute a*b*c*d, we can compute e=a*b and f=c*d using one level, and then
compute e*f using the second level. Hence we use 2 levels (depth of 2) rather 3 if we were to do the

multiplication sequentially.
* This technique is called binary tree multiplication, and it should be used to minimize the multiplicative depth

wherever possible.
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GUIDELINES FOR SETTING CIPHERTEXT DIMENSION

 Ciphertexts are represented as two arrays of size N

* This size N, called ciphertext dimension, should have a certain minimum value to comply with the chosen
security level and desired ciphertext modulus

* Main options for security levels in OpenFHE (we implemented the recommendations from the HE
standard published at HomomorphicEncryption.org):

* HEStd 128 [classic[quantum]— 128-bit security against [classical/quantum] computers

* HEStd 192 [classic[quantum]— 192-bit security against [classical/quantum] computers
* HEStd 256 [classic[quantum] — 256-bit security against [classical/quantum] computers
* HEStd NotSet — toy settings (for debugging and prototype development)

* The ciphertext dimension N also determines the maximum size of the vector of encrypted real numbers (n
= N/2).
* |t may sometimes be useful to use a larger ring dimension than the minimum one needed for security.
* In this case, the user can specify the ring dimension explicitly.
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CKKS SECURITY FOR SCENARIO OF SHARED DECRYPTIONS

* Li and Micciancio recently showed (https://eprint.iacr.org/2020/1533, EUROCRYPT’21) that the
IND-CPA security may not be strong enough when decryption results need to be published or
shared with untrusted parties; they introduced IND-CPAP security to account for this.

* They also described mitigation strategies. Adding enough Gaussian noise during decryption is
the most common option.

* In a later paper, Li et al. (https://eprint.iacr.org/2022/816, CRYPTO’22) quantified how much
noise should be added for 128 bits of security (about extra 45 bits on top of the existing
approximation error) for the scenario with an unbounded number of related queries.

* OpenFHE implements a practical mitigation for this scenario, and supports adding 45 bits of
precision (using 128-bit CKKS) when decryptions are allowed to be shared without any
restrictions
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HIGH-PRECISION CKKS

* OpenFHE includes a high-precision CKKS implementation

Scaling factor in this case can be as large as 21! (compared to 2°° for the regular CKKS implementation in
OpenFHE)

The high-precision CKKS implementation provides support for double-precision arithmetic, i.e., 52 bits if the
scaling factor is set to 70 or more bits

Another benefit is the support for 128-bit security for the scenario where decryption results are shared
High-precision CKKS is recommended for ML applications that require IND-CPAP security

Runtime is about 4-6x slower than for regular CKKS implementation for the same ring dimension (additional 2x
when the ring dimension needs to be doubled for LWE security)

[l openFHE
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OPENFHE DESIGN PRINCIPLES

* OpenFHE is an open-source C++17 FHE software library launched in July 2022 that incorporates selected
design ideas from prior FHE projects, including PALISADE, HElib, HEAAN, and FHEW, and includes several
new design concepts and ideas.

* The main new design features can be summarized as follows:

* From the cryptography perspective, we assume from the very beginning that all implemented FHE
schemes will support bootstrapping and scheme switching

* From the performance perspective, OpenFHE supports multiple hardware acceleration backends
using a standard Hardware Abstraction Layer (HAL)

* From the usability perspective, OpenFHE includes both

* user-friendly modes, where all maintenance operations, such as modulus switching, key
switching, and bootstrapping, are automatically invoked by the library, and

* compiler-friendly modes, where an external compiler makes these decisions

[l openFHE




CRYPTOGRAPHIC CAPABILITIES

* OpenFHE includes efficient implementations of all common FHE schemes:

* Brakerski/Fan-Vercauteren (BFV) scheme for integer arithmetic
* Brakerski-Gentry-Vaikuntanathan (BGV) scheme for integer arithmetic
* Cheon-Kim-Kim-Song (CKKS) scheme for real-number arithmetic (includes approximate bootstrapping)

* Ducas-Micciancio (DM/FHEW), Chillotti-Gama-Georgieva-lzabachene (CGGI/TFHE), and
Lee-Micciancio-Kim-Choi-Deryabin-Eom-Yoo (LMKCDEY) schemes for evaluating Boolean circuits and arbitrary

functions over larger plaintext spaces using lookup tables

* OpenFHE includes the following multiparty extensions of FHE:
* Threshold FHE for BGV, BFV, and CKKS schemes
* Interactive bootstrapping for Threshold CKKS
* Proxy Re-Encryption for BGV, BFV, and CKKS schemes
* OpenFHE also supports switching between CKKS and FHEW/TFHE to evaluate non-smooth functions, e.g.,
comparison, using FHEW/TFHE functional bootstrapping.
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SCHEME SUPPORT MATRIX

Library/ BGV BGV BFV CKKS CKKS DM CGGl Threshold PRE
Scheme or Extension Bootstr. Bootstr. FHE (MP) (MP)
FHEW v

HEAAN v v

HELib v v v

Lattigo (4 (4 v (4 v

OpenFHE v * v v v v v v v
PALISADE v v v v v v v
SEAL v v v

TFHE-rs

TFHE-lib v

* - prototype exists, but not part of release rmmﬂ OpenFHE




KEY FACTS ABOUT OPENFHE

* Current version is 1.1.2 (released on December 16, 2023)
* Designed by (some of) authors of PALISADE, HElib, HEAAN, and FHEW libraries
* Official successor of PALISADE

* Complies with the HomomorphicEncryption.org post-quantum security standards for homomorphic
encryption

* We offer OpenFHE under the 2-clause BSD open-source license, making it easier to wrap and redistribute
OpenFHE in products

* Generously supported by DARPA

* A community-driven open-source project developed by a diverse group of contributors from both industry
and academia, including Duality, Samsung, Intel, MIT, UCSD, and others

* Google Transpiler uses the CGGI (TFHE) implementation as the FHE backend

* OpenFHE is formally affiliated with the NumFocus stable of open-source software projects
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DESIGN PAPER [https://eprint.iacr.org/2022/915]

Paper 2022/915
OpenFHE: Open-Source Fully Homomorphic Encryption Library

Ahmad Al Badawi, Duality Technologies

Jack Bates, Duality Technologies

Flavio Bergamaschi, Intel Corporation

David Bruce Cousins, Duality Technologies

Saroja Erabelli, Duality Technologies

Nicholas Genise, Duality Technologies

Shai Halevi, Algorand Foundation

Hamish Hunt, Intel Corporation

Andrey Kim, Samsung Advanced Institute of Technology

Yongwoo Lee, Samsung Advanced Institute of Technology

Zeyu Liu, Duality Technologies

Daniele Micciancio, University of California, San Diego, Duality Technologies
lan Quah, Duality Technologies

Yuriy Polyakov, Duality Technologies

Saraswathy R.V., Duality Technologies

Kurt Rohloff, Duality Technologies

Jonathan Saylor, Duality Technologies

Dmitriy Suponitsky, Duality Technologies

Matthew Triplett, Duality Technologies

Vinod Vaikuntanathan, Massachusets Institute of Technology, Duality Technologies
Vincent Zucca, DALI, Universite de Perpignan Via Domitia, LIRMM, University of Montpellier
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LAYERS IN OPENFHE (CONTRIBUTOR VIEW)

Encoding Layer Application Layer

SIMD packing for vectors of integers Examples in OpenFHE

SIMD packing for vectors of real numbers External projects using OpenFHE

Other plaintext encoding methods Compilers/transpilers

Crypto Layer
BGV, BFV, CKKS, DM, CGGI FHE schemes
Proxy reencryption/threshold FHE extensions
Noise estimation for FHE schemes (future)
Scheme switching for FHE schemes (future)
A

Y

Lattice/Polynomial Layer
Power-of-two cyclotomic rings
RNS/Double-CRT algorithms

Lattice trapdoor sampling

General cyclotomic rings (future)

Primitive Math Layer
Modular integer/vector operations
NTT/FFT/Bluestein’s transform

PRNG /integer sampling algorithms

me OpenFHE




BROADER OPENFHE COMMUNITY (USER VIEW)

ML Applications: Application
Inference/Training Su pport
\ ’

-~
\ Wone ’

AY -~
\
\ A Matrix Arithmetic
\
\

Transpiler Compilers

Higher-level
capabilities

Crypto
capabilities

Hardware
backends
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OPENFHE VISION FOR MACHINE LEARNING (ML) USING FHE

* The main ML focus is on

* Approximate method based on CKKS
* Hybrid approximate/LUT approach based on CKKS and DM (FHEW) /CGGI (TFHE)

* Features that are already available in OpenFHE
* CKKS bootstrapping to support deep learning
* Large-precision comparison and small-precision LUT evaluation
* Scheme switching between CKKS and DM/CGGI to evaluate comparisons and (arg)min
* Python SDK

* Features under development
* NodelS SDK
* Matrix arithmetic library
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MAIN RESOURCES AND LINKS FOR OPENFHE

* OpenFHE design paper: https://eprint.iacr.org/2022/915
* OpenFHE website: https://openfhe.org

* ReadTheDocs documentation for OpenFHE:
https://openfhe-development.readthedocs.io/en/latest/

* OpenFHE development repository: hitps://github.com/openfheorg/openthe-development

* OpenFHE github organization where various OpenFHE-dependent projects are housed:
https://github.com/openfheorg

* Community Forum for OpenFHE: https://openfhe.discourse.group/

[l OpenFHE
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STEP 1 —SET CRYPTOCONTEXT

from openfhe import *

mult depth =1
scale mod size = 50
batch_size = 8

parameters = CCParamsCKKSRNS()
parameters.SetMultiplicativeDepth(mult depth)
parameters.SetScalingModSize(scale mod size)
parameters.SetBatchSize(batch size)

# Enable the features that you wish to use
cc = GenCryptoContext(parameters)
cc.Enable(PKESchemeFeature.PKE)
cc.Enable(PKESchemeFeature.KEYSWITCH)
cc.Enable(PKESchemeFeature.LEVELEDSHE)
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STEP 2 — KEY GENERATION

# Generate a public/private key pair
keys = cc.KeyGen()

# Generate the relinearization key
cc.EvalMultKeyGen(keys.secretKey)

# Generate the rotation evaluation keys
cc.EvalRotateKeyGen(keys.secretKey, [1, -2])

[l openFHE




STEP 3 — ENCRYPTION

# Inputs
xl = [0.25, 0.5, 0.75, 1.0, 2.0, 3.0, 4.0, 5.0]
x2 = [5.0, 4.0, 3.0, 2.0, 1.0, 0.75, 0.5, 0.25]

# Encoding as plaintexts
ptxl = cc.MakeCKKSPackedPlaintext(x1)
ptx2 = cc.MakeCKKSPackedPlaintext(x2)

# Encrypt the encoded vectors
cl = cc.Encrypt(keys.publicKey, ptx1)
c2 = cc.Encrypt(keys.publicKey, ptx2)
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STEP 4 — EVALUATION

# Homomorphic additions
c_add = cc.EvalAdd(cl, c2)

# Homomorphic subtraction
c_sub = cc.EvalSub(cl, c2)

# Homomorphic scalar multiplication
c_scalar = cc.EvalMult(c1l,4)

# Homomorphic multiplication
c_ mult = cc.EvalMult(cl, c2)

# Homomorphic rotations
c_rotl = cc.EvalRotate(cl, 1)
c_rot2 = cc.EvalRotate(cl, -2)
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STEP 5 — DECRYPTION

# Decrypt the result of addition
precision = 8

print("Results of homomorphic computations:")
result = cc.Decrypt(cl, keys.secretKey)
result.SetLength(batch_size)
print("x1 = " + str(result))
print("Estimated precision in bits:

+ str(result.GetLogPrecision()))

# Decrypt the result of scalar multiplication
result = cc.Decrypt(c_scalar,keys.secretKey)

# Decrypt the result of multiplication
result = cc.Decrypt(c_mult,keys.secretKey)

# Decrypt the result of rotations
result = cc.Decrypt(c_rotl,keys.secretKey)
result = cc.Decrypt(c_rot2,keys.secretKey)
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OTHER PYTHON EXAMPLES FOR CKKS

Examples listed in README.md of hitps://github.com/opentheorg/openthe-python

« FHE for arithmetic over real numbers (CKKS):
« Simple Code Example
« Advanced Code Example
» Advanced Code Example for High-Precision CKKS
« Arbitrary Smooth Function Evaluation
« Simple CKKS Bootstrapping Example
 Advanced CKKS Bootstrapping Example
* Double-Precision (Iterative) Bootstrapping Example
 SVM examples: https://github.com/openfheorg/python-svm-examples
 Linear and polynomial kernel SVM models
* Regression inference/training examples: https://github.com/openftheorg/python-log-reg-examples
» Will be discussed in the next Hands-On sessions

[l OpenFHE



https://github.com/openfheorg/openfhe-python
https://github.com/openfheorg/openfhe-python/blob/main/examples/pke/simple-real-numbers.py
https://github.com/openfheorg/openfhe-python/blob/main/examples/pke/advanced-real-numbers.py
https://github.com/openfheorg/openfhe-python/blob/main/examples/pke/advanced-real-numbers-128.py
https://github.com/openfheorg/openfhe-python/blob/main/examples/pke/function-evaluation.py
https://github.com/openfheorg/openfhe-python/blob/main/examples/pke/simple-ckks-bootstrapping.py
https://github.com/openfheorg/openfhe-python/blob/main/examples/pke/advanced-ckks-bootstrapping.cpp
https://github.com/openfheorg/openfhe-python/blob/main/examples/pke/iterative-ckks-bootstrapping.py
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SECURE GENOME-WIDE ASSOCIATION STUDIES

Webinar #7A - Secure Large-Scale Genome-Wide Association Studies
using Homomorphic Encryption, by Alexander Guseyv, April 30,2021

(Slides)

| PALISADE }

Secure large-scale genome-wide
association studies using

homomor

ncryption

Alexander Gusev

Dana-Farber Cancer Institute
Harvard Medical School

Watch on (2 Youlube

Secure large-scale genome-wide association studies
using homomorphic encryption

Marcelo Blatt®', Alexander Gusev®®', Yuriy Polyakov®'?2, and Shafi Goldwasser®<'?2

2Duality Technologies, Inc., Newark, NJ 07103; ®Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215; and Simons Institute for the

Theory of Computing, University of California, Berkeley, CA 94720

Contributed by Shafi Goldwasser, February 15, 2020 (sent for review October 18, 2019; reviewed by Jung Hee Cheon and David J. Wu)

Genome-wide association studies (GWASs) seek to identify
genetic variants associated with a trait, and have been a powerful
approach for understanding complex diseases. A critical challenge
for GWASs has been the dependence on individual-level data that
typically have strict privacy requirements, creating an urgent need
for methods that preserve the individual-level privacy of partic-
ipants. Here, we present a privacy-preserving framework based
on several advances in homomorphic encryption and demon-
strate that it can perform an accurate GWAS analysis for a real
dataset of more than 25,000 individuals, keeping all individual
data encrypted and requiring no user interactions. Our extrapo-
lations show that it can evaluate GWASs of 100,000 individuals
and 500,000 single-nucleotide polymorphisms (SNPs) in 5.6 h on
a single server node (or in 11 min on 31 server nodes running
in parallel). Our performance results are more than one order of
magnitude faster than prior state-of-the-art results using secure
multiparty computation, which requires continuous user inter-
actions, with the accuracy of both solutions being similar. Our
homomorphic encryption advances can also be applied to other
domains where large-scale statistical analyses over encrypted
data are needed.

communication and computationally intensive nature of the ga
bled circuit solution, GWASs beyond monogenic diseases wei
not addressed, and the patient cohort was small. Jagadeesh «
al. estimated that, even for the monogenic example, garbled ci
cuits would be at least 5,000 times faster than FHE. Cho et ¢
(6) followed by successfully computing a GWAS by dividing dat
among multiple servers and computing the GWAS via mult
party secure protocol among the servers, subsets of which ai
trusted not to collaborate against other servers, else privacy
lost. Here, we no longer need to resort to this trust assumptio:
We are successfully using HE to encrypt the genomic sequenct
of study participants while enabling GWAS computations witl
out the ability to decrypt, and scaling to hundreds of thousanc
of samples (Fig. 1).

We implement two common GWAS techniques—the allel
chi-square test for case control differences and a logist
regression approximation (LRA) with covariates—within ot
HE framework. The LRA algorithm utilizes a previously pr
posed semiparallel approach to efficiently iterate over eac
genetic variant without requiring repeated likelihood maximiz:
tions (7). Our HE LRA implementation of this approach w:
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Previous work: secure multi-party GWAS

Encrypted computing approach: secure multi-party computation!l!
 Statistical test: Cochran Armitage trend test

Benchmark GWAS: 26k samples x 260k SNPs

Results:

Runtime on 100k samples x 500k SNPs: 193 hours
Requires live, interactive communication

Logistic regression “does not yield a practical runtime”

Expect that HE would be 5,000-10,000x slower and infeasible!?]

[1] Cho et al. 2018 Nat Biotechnol; [2] Jagadeesh et al. 2017 Science
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Results

Algorithm

Prior MPC work

Multi-party computation

Our HE work

Homomorphic encryption

Statistical test

Cochran Armitage Trend (CAT)

Allelic y% (CAT equivalent)
Logistic regression

Dataset

26k samples x 260k SNPs + extrapolation

Accuracy of test

Nearly perfect

Runtime on
100k samples x 500k SNPs

193 hours
Practically impossible

5.6 hours
234 hours (log reg)
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MORE INFORMATION

e Source code: https://github.com/openfheorg/openfhe-genomic-examples

* PNAS Paper: https://www.pnas.org/content/117/21/11608
* PALISADE/OpenFHE Webinars

e https://www.openfhe.org/portfolio-item/secure-large-scale-eenome/
e https://www.openfhe.org/portfolio-item/best-practices-for-building-efficient-homomorphic-encryption-solutio

ns/
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LOGISTIC REGRESSION TRAINING EXAMPLE

e Source code: https://github.com/openfheorg/openfhe-logreg-training-examples

* The examples were developed as part of the DARPA DPRIVE program

* The repository provides an implementation of logistic-regression model training and model inference on
the 2014 US Infant Mortality Dataset
» Logistic Regression Training is performed using Nesterov Accelerated Gradient Descent

» CKKS bootstrapping is performed after each iteration of logistic regression training
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CNN INFERENCE

* We recently developed a CNN prototype for a model with 7 convolution layers and one fully connected
layer

* CNN inference of a CIFAR-10 image in OpenFHE takes several minutes

* The estimated runtime for an ASIC-accelerated implementation is about 3 orders of magnitude faster

[l openFHE




COMMERCIAL ML CAPABILITIES BASED ON OPENFHE

* Duality Platform includes several ML/statistical capabilities based on CKKS in OpenFHE
* Logistic regression training
* Linear/ridge regression training

Inference for GLM and gradient boosted trees

Kaplan-Meier survival analysis
Descriptive statistics

[l openFHE
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FHERMA: PLATFORM FOR FHE CHALLENGES

FHERMA is an open platform for Fully Homomorphic Encryption (FHE) challenges, jointly developed by
Fair Math (formerly Yasha Lab) and the OpenFHE teams.

The main goal of the project is to develop an open-source library of FHE components.
* Such a library can significantly simplify application development and accelerate the adoption of FHE.
* The initial focus is on components for Machine Learning and Blockchain applications.

Launched on November 7, 2023

URL: https://fherma.io/

* The winning solutions are published under the Apache 2.0 license

* No IP restrictions

* More details on the terms are available at https://fherma.io/terms
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CHALLENGE TYPES

Black Box:

* Participants develop solutions according to the challenge requirements, process encrypted test data,
and submit to the platform only the serialized final ciphertext.

* Does not require submitting source code or any other data that reveals the details of the solution itself.

* The main criterion for evaluating and ranking solutions in this type of challenge is accuracy.

White Box:

* Itis not possible to evaluate the performance of the solution based solely on the ciphertext. While the
Black Box type is suitable for many challenges, for others, it is crucial to obtain the most efficient
solution from a performance perspective. For these, the White Box type is available.

* Participants are required to submit the source code of their projects to the platform.

*  The platform will compile the project and run tests to measure performance and accuracy.

*  The main criteria for evaluating and ranking solutions are performance and accuracy.

* Solutions uploaded to the platform are confidential and are not available to other participants.

[l openFHE



GOVERNANCE

Transparency

*  One of the main priorities is a transparent and equal environment for all participants.
*  We eliminated the human factor when assessing the results of the participants.
* At the end of each challenge, the winner's solution is published in open form.

Committee

* Gurgen Arakelov, Fair Math
* Elvira Kharisova, Fair Math
*  Yuriy Polyakov, Duality

* Kurt Rohloff, Duality

[l openFHE




INITIAL FHE CHALLENGES

* Matrix Multiplication
* Performing efficient multiplication of encrypted matrices
*  Award: $3,000

* Sign Evaluation

* Efficient comparison using CKKS
*  Award: $3,000

* Logistic Function

* One of main functions in machine learning
*  Award: $5,000

[l openFHE




Logistic Function Challenge

1. Challenge type: Black Box.
2. Encryption Scheme: CKKS.

3. Input Data:
o Encrypted vector X
o  Cryptocontext
o Public key
o  Multiplication key
o Rotation key for indexes [1, -1, 2, -2]

Two tescases:

Testcase 1:

Batch size (Vector length): 2048

Maximum multiplicative depth: 7

Ring dimension: 32768

Scale Mod Size: 50

Element range: The range for each element

within the input vector is defined to be from -25 to 25.

a bk wn -~

Testcase 2:

Batch size (Vector length): 2048

Maximum multiplicative depth: 4

Ring dimension: 16384

Scale Mod Size: 50

Element range: The range for each element

within the input vector is defined to be from -25 to 25.

a bk owbd -~
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Logistic Function Challenge

Two tescases: Testcase 2 is more important because standard methods do not provide sufficient accuracy for it.

Testcase 1:
1. Batch size (Vector length): 2048
2.  Maximum multiplicative depth: 7
3. Ring dimension: 32768
4. Scale Mod Size: 50
5. Element range: The range for each element

EvalLogistic provides ~ 99.9% accuracy
Winner’s Solution provides ~ 99.9% accuracy

within the input vector is defined to be from -25 to 25.

Testcase 2:

Batch size (Vector length): 2048

Maximum multiplicative depth: 4

Ring dimension: 16384

Scale Mod Size: 50

Element range: The range for each element

within the input vector is defined to be from -25 to 25.

asrLbd -~

EvalLogistic provides ~ 88.12% accuracy
Winner’s Solution provides > 96.5% accuracy
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Logistic Regression Function Challenge

Testcase 2

Chebyshev Polynomial Approximation of Sigmoid Function (degree 5)
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NEW FHE CHALLENGES (TO BE ANNOUNCED EARLY NEXT WEEK)

* Encrypted image classification from the CIFAR-10 imageset (CKKS)
*  RELU on encrypted data (CKKS)

[l openFHE
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