
Fully Homomorphic Encryption for Privacy-Preserving Machine
Learning using the OpenFHE Library

February 20, 2024

Ian Quah, Yuriy Polyakov, Sukanya Mandal

{iquah,ypolyakov,smandal}@openfhe.org

2

Agenda

• Installation Options

• Lab Discussion: Comparing and Contrasting PPML Methods

• Spinning Up in Homomorphic Encryption for ML

• Q&A on FHE for ML/Quick Break

• OpenFHE Library

• Quick Break

• Hands-on: Using an In-the-Clear Model in the OpenFHE Library

• Hands-on: Training an Encrypted Logistic Regression Model in the OpenFHE Framework

• ML Applications and FHE Challenges

3

Installation Options

4

Installation options

• Build from source

• See instructions at https://github.com/openfheorg/openfhe-python

• Docker

• Build the image from scratch, OR,

• Pull the image from Dockerhub at https://hub.docker.com/r/openfheorg/openfhe-docker

• OpenFHE repositories (openfhe-development and openfhe-python) are cloned to /

• Repositories with Python examples can be cloned to /workspace

https://github.com/openfheorg/openfhe-python
https://hub.docker.com/r/openfheorg/openfhe-docker

5

Comparing and
Contrasting PPML
Methods

6

DISTRIBUTED LEARNING

Definition: A system of interconnected learning
models that train on distributed datasets.

Key Features: Scalability, Privacy, Decentralization.

Applications: Large-scale machine learning,
geographically dispersed data, collaborative
research.

Source:
https://digestize.medium.com/centralized-learning-vs-distributed-le
arning-c75ee9e94423

7

FEDERATED LEARNING

Definition: A machine learning approach where a
model is trained across multiple decentralized
devices or servers holding local data samples,
without exchanging them.

Key Features: Privacy preservation, Reduced
communication costs, Collaborative learning
without sharing raw data.

Applications: Smartphone keyboard prediction,
Healthcare data analysis, Collaborative fraud
detection.

Source: https://www.netapp.com/blog/future-of-AI-federated-learning/

8

SPLIT LEARNING

Definition: A collaborative machine learning
technique where the model training is split
between the client device and a central server.

Key Features: Reduced data transfer, Privacy
protection, Efficient use of bandwidth.

Applications: Edge computing, IoT devices,
Privacy-sensitive industries.

Source:
https://www.researchgate.net/figure/An-application-of-split-learning-in-a-cross-siloed
-health-environment_fig5_344754274

9

DIFFERENTIAL PRIVACY

Definition: A technique that adds 'noise' to data to
prevent the disclosure of individual information
while still allowing for accurate aggregate analysis.

Key Features: Privacy guarantee, Robust to
post-processing, Quantifiable privacy loss.

Applications: Census data, User behavior analytics,
Public data releases.

Source:
https://cloudblogs.microsoft.com/opensource/2020/05/19/new-differential-privacy-platform-m
icrosoft-harvard-opendp/

10

SECURE MULTI-PARTY COMPUTATION

Definition: A cryptographic protocol that enables
parties to jointly compute a function over their
inputs while keeping those inputs private.

Key Features: Data confidentiality, Computation
integrity, Collaborative computation without
mutual trust.

Applications: Joint financial analysis,
Privacy-preserving scientific research, Secure
voting systems.

Source:
https://www.researchgate.net/figure/Secure-multi-party-computation-Each-participan
t-shares-a-separate-different-secret-with_fig2_343179246

11

SECURE ENCLAVES/TRUSTED EXECUTION ENVIRONMENT

Definition: Secure Enclaves, also known as Trusted Execution Environments (TEE), are protected areas
within a processor or a larger computing system. They ensure that sensitive code and data are
stored, processed, and protected in a secure environment.

Key Features:
• Isolated Execution: Code within the TEE runs in an isolated environment to prevent unauthorized

access or tampering.
• Data Encryption: Data is encrypted in the TEE, ensuring confidentiality and integrity even if the

system is compromised.
• Remote Attestation: Enables a third party to verify the enclave's integrity and the authenticity of

the software running inside.
• Access Control: Only authorized code can run inside the TEE, preventing malicious operations.

Applications:
• Secure Mobile Payment Processing: Protects payment information from being exposed to the rest

of the system.
• Confidential Computing: Allows sensitive operations like personal data processing or proprietary

algorithms to run securely.
• DRM and Content Protection: Ensures that digital rights are enforced by only allowing access to

content under secure conditions.

12

Spinning Up in
Homomorphic
Encryption for ML

13

WHAT IS HOMOMORPHIC ENCRYPTION?

• Encryption protocol with one extra operation: Evaluation
• Allows for computation on encrypted data

• Enables outsourcing of data storage/processing

• How is FHE related to symmetric and public key encryption?
• FHE schemes provide efficient instantiations of post-quantum public-key and symmetric-key

encryption schemes

• Homomorphic encryption can be viewed as a generalization of public key encryption

• Key milestones in the history of homomorphic encryption
• Rivest, Adleman, Dertouzos (1978) -- “On Data Banks and Privacy Homomorphisms”

• Gentry (2009) -- “A Fully Homomorphic Encryption Scheme”

• Multiple HE schemes developed after 2009

14

EXAMPLE OF FHE WORKFLOW

Sk
Secret

Decryption
Key

Pk
Public Encryption Key

Data Source

Computation Host

FHE Client

Encrypted DataEncrypted
Result

Decrypted
Result

15

FHE vs OTHER SECURE COMPUTING APPROACHES

FHE MPC Secure Enclaves/SGX

Performance Compute-bound Network-bound Close to plaintext

Privacy Encryption Encryption / Non-collusion Trusted Hardware

Non-interactive ✔ ✘ ✔

Cryptographic security ✔ ✔ ✘
(known attacks)

Hybrid approaches are also possible, e.g., MPC + FHE

16

TYPICAL FHE OPERATIONS

• Encrypt bits and perform logical AND, OR, XOR operations on the ciphertexts.

• 0 AND 1 → 0, 0 OR 1 → 1, 1 XOR 1 → 0

• Encrypt small integers and perform addition and multiplication, as long as the result does not exceed some fixed
bound, for instance, if the bound is 10000

• 123 + 456 → 579, 12 * 432 → 5184, 35 * 537 → overflow

• Encrypt 8-bit unsigned integers (between 0 and 255) and perform addition and multiplication modulo 256

• 128 + 128 → 0, 2 * 129 → 2

• Encrypt fixed-point numbers and perform addition and multiplication with the result rounded to a fixed precision, for
instance, two digits after the decimal point

• 12.42 + 1.34 → 13.76, 2.23 + 5.19 → 11.57

• Different homomorphic encryption schemes support different plaintext types and different operations on them.

17

SOME EXAMPLES OF REAL-SCALE FHE APPLICATIONS

• Private information retrieval
• https://eprint.iacr.org/2017/1142, IEEE S&P 2018

• Private set intersection
• https://eprint.iacr.org/2017/299, ACM CCS 2017
• https://eprint.iacr.org/2018/787, ACM CCS 2018
• https://eprint.iacr.org/2021/1116, ACM CCS 2021

• Genome-wide association studies based on chi-square test and logistic regression
training

• https://eprint.iacr.org/2020/563, PNAS 2020

• Logistic regression training
• https://eprint.iacr.org/2018/662, AAAI Conference on AI 2019

• Neural network inference (ResNet-20 to ResNet-110)
• https://eprint.iacr.org/2021/1688, ICML 2022

https://eprint.iacr.org/2017/1142
https://eprint.iacr.org/2017/299
https://eprint.iacr.org/2018/787
https://eprint.iacr.org/2021/1116
https://eprint.iacr.org/2020/563
https://eprint.iacr.org/2018/662
https://eprint.iacr.org/2021/1688

18

MAIN CONCEPTS

• Homomorphic: a (secret) mapping from plaintext space to ciphertext space that preserves arithmetic
operations.

• Mathematical Hardness: (Ring) Learning with Errors Assumption
• Every image (ciphertext) of this mapping looks uniformly random in range (ciphertext space).

• Security level: the hardness of inverting this mapping without the secret key
• Often estimated as a work factor.

• Example: 128 bits → 2128 operations to break using best known lattice attack

• Plaintext: Elements and operations of a polynomial ring (mod xn + 1, mod p).
• Example: 3x5 + x4 + 2x3 + ...
• For all practical purposes, you can think of it as a vector of (small) finite integers

• Ciphertext: elements and operations of a polynomial ring (mod xn + 1, mod q).
• Example: 7862x5 + 5652x4 + ...
• For all practical purposes, you can think of it as a vector of (larger) finite integers

• Noise: random integers with Gaussian distribution, which are “added” to the plaintext to achieve the
desired security level based on Ring Learning With Errors

19

FRESH ENCRYPTION

• Horizontal: each coefficient in a polynomial or in a vector.

• Vertical: size of coefficients.

• Initial noise is small in terms of coefficients’ size.

Plaintext mod p

Mask mod q
(removable with the

secret key)

Initial Noise
(removable mod p)

Ciphertext

20

AFTER SOME COMPUTATIONS

• Horizontal: each coefficient in a polynomial or in a vector.

• Vertical: size of coefficients.

• Initial noise is small in terms of coefficients’ size.

Result mod p

Mask mod q
(removable with the

secret key)

Current Noise
(removable mod p)

Ciphertext

21

NOISE OVERFLOW (RESULTS IN DECRYPTION FALURE)

• Horizontal: each coefficient in a polynomial or in a vector.

• Vertical: size of coefficients.

• Initial noise is small in terms of coefficients’ size.

Too Much Noise

Result mod p

Mask mod q
(removable with the

secret key)
Ciphertext

22

BOOTSTRAPPING (NOISE REFRESHING PROCEDURE)

• Horizontal: each coefficient in a polynomial or in a vector.

• Vertical: size of coefficients.

• Initial noise is small in terms of coefficients’ size.

Evaluates the decryption circuit homomorphically and resets the noise.

Plaintext mod p

Mask mod q
(removable with the

secret key)

Refreshed Noise
(removable mod p)

Ciphertext

23

TYPES OF HOMOMORPHIC ENCRYPTION

• Partially homomorphic encryption (weakest notion)
• supports only one type of operation, e.g. addition or multiplication.

• Somewhat homomorphic encryption schemes
• can evaluate two types of gates/operations, but only for a subset of circuits.

• Leveled fully homomorphic encryption
• supports more than one operation but only computations of a predetermined size (typically

multiplicative depth); supports much deeper circuits than somewhat homomorphic encryption

• Fully homomorphic encryption
• supports arbitrary computation on encrypted data; it is the strongest notion of homomorphic

encryption.

24

Classes of FHE Schemes

25

CLASSES OF HOMOMORPHIC SCHEMES

1. Modular (Exact) Integer Arithmetic: BGV / BFV
• Plaintext data represented as vectors modulo a plaintext modulus “t” (or their vectors)
• Computations expressed as vectors arithmetic mod t

2. Functional (Programmable) Bootstrapping: DM (FHEW) / CGGI (TFHE)
• Plaintext represented as integers/Boolean values
• Supports evaluation of arbitrary functions using Look-Up Tables (LUTs)
• Computation for each integer is evaluated separately

3. Approximate Number Arithmetic: CKKS
• Plaintext data represented as vectors of real numbers (or complex numbers)
• Compute model similar to floating-point arithmetic but dealing with fixed-point numbers

26

MODULAR (EXACT) INTEGER ARITHMETIC APPROACH

• Features:
• Efficient SIMD computations over vectors of integers (using batching, also called CRT

packing)
• Fast high-precision integer arithmetic
• Fast private information retrieval/private set intersection/secure database query
• Leveled design (often used without bootstrapping)

• Main schemes:
• Brakerski-Vaikuntanathan (BV) [BV11] - foundation for other schemes
• Brakerski-Gentry-Vaikuntanathan (BGV) [BGV12]
• Brakerski/Fan-Vercauteren (BFV) [Bra12, FV12]

27

FUNCTIONAL (PROGRAMMABLE) BOOTSTRAPPING APPROACH

• Features:
• Fast number comparison

• Initially proposed for Boolean circuits

• Supports arbitrary functions by evaluating LUTs

• Fast bootstrapping (noise refreshing procedure)

• Does not support batching/CRT packing

• Related schemes:
• Gentry-Sahai-Waters (GSW) [GSW13] – used in bootstrapping

• Fastest Homomorphic Encryption in the West (DM/FHEW) [DM15]

• Fast Fully Homomorphic Encryption over the Torus (CGGI/TFHE) [CGGI16,CGGI17]

• Efficient FHEW Bootstrapping with Small Evaluation Keys [LMCKDEY23]

28

APPROXIMATE NUMBER ARITHMETIC APPROACH

• Features:
• Efficient SIMD computations over vectors of real numbers (using batching)
• Fast polynomial approximation
• Relatively fast multiplicative inverse and Discrete Fourier Transform
• Deep approximate computations, such as logistic regression learning
• Leveled design, but also used with approximate bootstrapping in many ML

applications
• Best amortized bootstrapping time

• Selected schemes:
• Cheon-Kim-Kim-Song (CKKS) [CKKS17]

29

SELECTING SECURITY PARAMETERS
The ciphertext dimension (degree of polynomial) should be chosen according to the
security tables published at HomomorphicEncryption.org

http://homomorphicencryption.org/

30

FHE Approaches for ML

31

THREE MOST COMMON WAYS TO DO ENCRYPTED ML USING FHE

Here we focus on (supervised) learning using the models based on logistic regression, decision trees, and neural networks, i.e.,
relatively deep computations requiring bootstrapping.

1. Approximate approach based on CKKS
• Fastest for most ML applications, especially with larger problem sizes.

• Polynomial approximations should be used with care.

2. Hybrid approximate/LUT approach based on CKKS and DM (FHEW) /CGGI (TFHE)
• Significantly slower than approach 1 for most ML applications.

• Evaluates “tricky” non-linear functions, such as comparison, using functional bootstrapping in DM/CGGI.

3. LUT approach based on functional bootstrapping in DM/CGGI
• Slowest option (typically by orders of magnitude compared to option 1) and does not scale well with the

problem size.

• Easiest to use in most cases.

32

APPROXIMATE APPROACH BASED ON CKKS

• Complicated functions are approximated using polynomials
• Typically Chebyshev interpolations or similar minimax methods are used

• Evaluates functions over vectors of real numbers, e.g., a function is evaluated for 32K real numbers at once

• When building the polynomial interpolation, the input range has to be specified

• Approximate CKKS bootstrapping is used to support deep computations, such as logistic regression
training

• Approximate bootstrapping significantly increases the approximation error after first bootstrapping, but further
bootstrapping operations typically have a small effect for many ML applications (the ML computations are often
approximate in nature)

• Multiprecison CKKS (META-BTS) bootstrapping was recently proposed in https://eprint.iacr.org/2022/1167
(CCS’22)

• Amortized cost of CKKS bootstrapping gets as low as 1ms per real number [BMT+21]

• Inference is fast for many models, e.g., logreg inference for hundreds of samples and dozens of features
takes less than 1 second

https://eprint.iacr.org/2022/1167

33

HYBRID APPROXIMATE/LUT APPROACH BASED ON CKKS+DM/CGGI

• CKKS is used for all polynomial/matrix arithmetic computations

• For “tricky” non-linear functions, LUT evaluation using functional bootstrapping with DM/CGGI is used
• Useful for comparisons

• Can be used for piecewise polynomial evaluation, addressing the input range issue in polynomial approximations

• Requires scheme switching from CKKS to/from DM/CGGI

• LUT evaluation is often the main bottleneck

34

LUT APPROACH BASED ON FUNCTIONAL BOOTSTRAPPING IN
DM/CGGI
• Any deep learning algorithm can be evaluated using LUTs for non-linear functions

• The main drawback is performance
• Functional bootstrapping does not support the evaluation of a LUT over a vector of integers in a SIMD manner

• LUT evaluation even for a small plaintext modulus (few bits of precision) requires 100ms or so

• To evaluate an arbitrary function for a larger plaintext space, many small LUT evaluations are needed

• Typically orders of magnitude slower than the approximate approach based on CKKS

• Even inference takes substantial time, e.g., logreg inference for hundreds of samples and dozens of features
takes more than 10 minutes

35

Selected Studies in PPML
using FHE

36

RECENT DARPA PROGRAMS

• Cooperative Secure Learning (CSL) [August 2020 – January 2022]
• Develop methods to protect data, models, and model outputs among a community of entities desiring to

securely share their information to better inform ML model development

• Enable multiple parties to cooperate for the purpose of improving each other’s ML models while assuring that
each entity’s individual, pre-existing datasets and models will remain private

• Data PRotection in Virtual Environments (DPRIVE) [January 2021 – present]
• Develop a hardware accelerator for FHE computations that will dramatically reduce the compute runtime

overhead compared to software-based FHE approaches

• Motivating applications are logistic regression training, CNN inference, and CNN training

37

SELECTED PAPERS FOR APPROXIMATE METHOD BASED ON CKKS

• Logistic regression training
• https://eprint.iacr.org/2018/662, AAAI Conference on AI 2019

• 422108 samples over 200 features in 17 hours on a single machine

• Genome-wide association studies based on chi-square test and logistic regression training
• https://eprint.iacr.org/2020/563, PNAS 2020

• 500000 SNPs and 100000 individuals in 5.6 hours on a single machine

• ResNet-20 deep neural network evaluation
• https://eprint.iacr.org/2021/783; CIFAR-10 in 3 hours on a single server with 64 threads

• https://eprint.iacr.org/2021/1688; CIFAR-10 in 40 minutes on a single server with 1 thread; Resnet-110 for the
same setup took about 3.7 hrs

https://eprint.iacr.org/2018/662
https://eprint.iacr.org/2020/563
https://eprint.iacr.org/2021/783
https://eprint.iacr.org/2021/1688

38

SELECTED PAPERS FOR HYBRID METHOD

• Semi-parallel logistic regression training (GWAS)
• https://eprint.iacr.org/2019/101, BMC Medical Genomics 2020

• 10643 SNPs, 245 patients, and 3 covariates: 4 min. to 3 hrs on a single machine

• The best approaches based on the CKKS method took few minutes for the problem sizes that required few hours
for the hybrid approach

• Decision tree evaluation and K-means clustering
• https://eprint.iacr.org/2020/1606, IEEE S&P 2021

• Decision tree evaluation: for 60 internal nodes, 57 features, and 2 classification labels the runtime was about 7
seconds

• K-means clustering: for 4096 data points and 8 clusters, the runtime was 52 minutes

https://eprint.iacr.org/2019/101
https://eprint.iacr.org/2020/1606

39

Introduction to Approximate FHE

40

MOTIVATION FOR APPROXIMATE FHE

• Good for any application where we work with real numbers, e.g., where we use floating-point
numbers

• Encrypt real numbers and perform addition and multiplication with the result rounded to a
fixed precision, for instance, two digits after the decimal point

• 12.42 + 1.34 = 13.76, 2.23 * 5.19 = 11.57

• The main limitation of integer homomorphic encryption (BGV/BFV) is that it requires very large
plaintext moduli to support operations over real numbers

• All computations in integer HE are performed exactly
• Integer HE rapidly becomes inefficient as further multiplications are performed

• Approximate homomorphic encryption allows dropping least significant bits by rescaling the
encrypted data, similar to how it is done for floating-point numbers in practice

• Typical applications of approximate HE
• Statistical computations
• Polynomial evaluation
• Matrix arithmetic
• Regression inference and training
• Evaluation of non-linear/non-smooth functions using their polynomial approximations

41

FIXED-POINT ARITHMETIC WITH RESCALING

•

42

FIXED-POINT ARITHMETIC WITH RESCALING IN CKKS

•

43

MAIN DATA STRUCTURE

• The main data structure is a vector (array) of real numbers

• Many real numbers (typically between 2K and 64K) are “packed” in one vector (ciphertext)
• Let us denote the vector size as n (a power of two)

• Addition and multiplication of n real numbers can be done using a single
addition/multiplication

• Similar to Single Instruction Multiple Data (SIMD) instruction sets available on many modern
processors

• The SIMD capability should be used as much as possible to achieve best efficiency

• Rotation operation is added to allow accessing the value at a specific index of the array

• Addition, multiplication, and rotation are three primitive operations in approximate FHE

44

COMPLETE LIST OF PRIMITIVE OPERATIONS

• Two-argument operations (the plaintext can represent a vector of real numbers or a single real number)

• Ciphertext-Ciphertext addition: EvalAdd

• Ciphertext-Plaintext addition: EvalAdd

• Ciphertext-Ciphertext multiplication: EvalMult

• Ciphertext-Plaintext multiplication: EvalMult

• Ciphertext-Ciphertext subtraction: EvalSub

• Ciphertext-Plaintext subtraction: EvalSub

• Unary operations

• Negation: EvalNegate

• Vector rotation: EvalRotate

• The result of all these operations is a ciphertext, i.e., an encrypted vector

• The benefit of this in practice is that mixed model-data modes can be supported, e.g.,

• Encrypted model, data in the clear

• Model in the clear, encrypted data

45

DATA ENCODING

• Packing technique: CKKSPackedEncoding
• Packs real numbers into a vector of size n

• Supports component-wise addition (EvalAdd) and multiplication (EvalMult)
[1.1] [4.4] [5.5] [1.5] [4.5] [6.75]
[2.2] + [5.5] = [7.7], [2.5] * [5.0] = [12.50]
[3.3] [6.6] [9.9] [3.5] [6.1] [21.35]

• Adds a new rotation operation (EvalRotate)
• Left shift: positive index

• Right shift: negative index

• Rotations work cyclically over a vector of size n

46

MAIN PARAMETERS

•

47

GUIDELINES FOR SETTING SCALING FACTOR

•

48

GUIDELINES FOR SETTING CIPHERTEXT MODULUS

• Ciphertext modulus q is the main functional parameter that is determined by the computation
• Each arithmetic operation increases the noise, and q should be large enough to accommodate the noise from all

arithmetic operations

• From the noise perspective, multiplication is much costlier than addition

• In OpenFHE, q is automatically computed based on the multiplicative depth and scaling factor Δ

• Multiplicative depth is not necessarily the number of multiplications
• For example, if we need to compute a*b*c*d, we can compute e=a*b and f=c*d using one level, and then

compute e*f using the second level. Hence we use 2 levels (depth of 2) rather 3 if we were to do the
multiplication sequentially.

• This technique is called binary tree multiplication, and it should be used to minimize the multiplicative depth
wherever possible.

49

GUIDELINES FOR SETTING CIPHERTEXT DIMENSION

• Ciphertexts are represented as two arrays of size N

• This size N, called ciphertext dimension, should have a certain minimum value to comply with the chosen
security level and desired ciphertext modulus

• Main options for security levels in OpenFHE (we implemented the recommendations from the HE
standard published at HomomorphicEncryption.org):
• HEStd_128_[classic|quantum] – 128-bit security against [classical/quantum] computers

• HEStd_192_[classic|quantum] – 192-bit security against [classical/quantum] computers

• HEStd_256_[classic|quantum] – 256-bit security against [classical/quantum] computers

• HEStd_NotSet – toy settings (for debugging and prototype development)

• The ciphertext dimension N also determines the maximum size of the vector of encrypted real numbers (n
= N/2).

• It may sometimes be useful to use a larger ring dimension than the minimum one needed for security.

• In this case, the user can specify the ring dimension explicitly.

http://homomorphicencryption.org

50

CKKS SECURITY FOR SCENARIO OF SHARED DECRYPTIONS

• Li and Micciancio recently showed (https://eprint.iacr.org/2020/1533, EUROCRYPT’21) that the
IND-CPA security may not be strong enough when decryption results need to be published or
shared with untrusted parties; they introduced IND-CPAD security to account for this.

• They also described mitigation strategies. Adding enough Gaussian noise during decryption is
the most common option.

• In a later paper, Li et al. (https://eprint.iacr.org/2022/816, CRYPTO’22) quantified how much
noise should be added for 128 bits of security (about extra 45 bits on top of the existing
approximation error) for the scenario with an unbounded number of related queries.

• OpenFHE implements a practical mitigation for this scenario, and supports adding 45 bits of
precision (using 128-bit CKKS) when decryptions are allowed to be shared without any
restrictions

https://eprint.iacr.org/2020/1533
https://eprint.iacr.org/2022/816

51

HIGH-PRECISION CKKS

• OpenFHE includes a high-precision CKKS implementation
• Scaling factor in this case can be as large as 2119 (compared to 259 for the regular CKKS implementation in

OpenFHE)

• The high-precision CKKS implementation provides support for double-precision arithmetic, i.e., 52 bits if the
scaling factor is set to 70 or more bits

• Another benefit is the support for 128-bit security for the scenario where decryption results are shared

• High-precision CKKS is recommended for ML applications that require IND-CPAD security

• Runtime is about 4-6x slower than for regular CKKS implementation for the same ring dimension (additional 2x
when the ring dimension needs to be doubled for LWE security)

52

OpenFHE library

53

OPENFHE DESIGN PRINCIPLES

• OpenFHE is an open-source C++17 FHE software library launched in July 2022 that incorporates selected
design ideas from prior FHE projects, including PALISADE, HElib, HEAAN, and FHEW, and includes several
new design concepts and ideas.

• The main new design features can be summarized as follows:

• From the cryptography perspective, we assume from the very beginning that all implemented FHE
schemes will support bootstrapping and scheme switching

• From the performance perspective, OpenFHE supports multiple hardware acceleration backends
using a standard Hardware Abstraction Layer (HAL)

• From the usability perspective, OpenFHE includes both

• user-friendly modes, where all maintenance operations, such as modulus switching, key
switching, and bootstrapping, are automatically invoked by the library, and

• compiler-friendly modes, where an external compiler makes these decisions

54

CRYPTOGRAPHIC CAPABILITIES

• OpenFHE includes efficient implementations of all common FHE schemes:
• Brakerski/Fan-Vercauteren (BFV) scheme for integer arithmetic

• Brakerski-Gentry-Vaikuntanathan (BGV) scheme for integer arithmetic

• Cheon-Kim-Kim-Song (CKKS) scheme for real-number arithmetic (includes approximate bootstrapping)

• Ducas-Micciancio (DM/FHEW), Chillotti-Gama-Georgieva-Izabachene (CGGI/TFHE), and
Lee-Micciancio-Kim-Choi-Deryabin-Eom-Yoo (LMKCDEY) schemes for evaluating Boolean circuits and arbitrary
functions over larger plaintext spaces using lookup tables

• OpenFHE includes the following multiparty extensions of FHE:
• Threshold FHE for BGV, BFV, and CKKS schemes

• Interactive bootstrapping for Threshold CKKS

• Proxy Re-Encryption for BGV, BFV, and CKKS schemes

• OpenFHE also supports switching between CKKS and FHEW/TFHE to evaluate non-smooth functions, e.g.,
comparison, using FHEW/TFHE functional bootstrapping.

55

SCHEME SUPPORT MATRIX

Library/
Scheme or Extension

BGV BGV
Bootstr.

BFV CKKS CKKS
Bootstr.

DM CGGI Threshold
FHE (MP)

PRE
(MP)

FHEW ✔

HEAAN ✔ ✔

HELib ✔ ✔ ✔

Lattigo ✔ ✔ ✔ ✔ ✔

OpenFHE ✔ * ✔ ✔ ✔ ✔ ✔ ✔ ✔

PALISADE ✔ ✔ ✔ ✔ ✔ ✔ ✔

SEAL ✔ ✔ ✔

TFHE-rs ✔

TFHE-lib ✔

* - prototype exists, but not part of release

56

KEY FACTS ABOUT OPENFHE

• Current version is 1.1.2 (released on December 16, 2023)

• Designed by (some of) authors of PALISADE, HElib, HEAAN, and FHEW libraries

• Official successor of PALISADE

• Complies with the HomomorphicEncryption.org post-quantum security standards for homomorphic
encryption

• We offer OpenFHE under the 2-clause BSD open-source license, making it easier to wrap and redistribute
OpenFHE in products

• Generously supported by DARPA

• A community-driven open-source project developed by a diverse group of contributors from both industry
and academia, including Duality, Samsung, Intel, MIT, UCSD, and others

• Google Transpiler uses the CGGI (TFHE) implementation as the FHE backend

• OpenFHE is formally affiliated with the NumFocus stable of open-source software projects

57

DESIGN PAPER [https://eprint.iacr.org/2022/915]

58

LAYERS IN OPENFHE (CONTRIBUTOR VIEW)

59

BROADER OPENFHE COMMUNITY (USER VIEW)

60

OPENFHE VISION FOR MACHINE LEARNING (ML) USING FHE

• The main ML focus is on
• Approximate method based on CKKS

• Hybrid approximate/LUT approach based on CKKS and DM (FHEW) /CGGI (TFHE)

• Features that are already available in OpenFHE
• CKKS bootstrapping to support deep learning

• Large-precision comparison and small-precision LUT evaluation

• Scheme switching between CKKS and DM/CGGI to evaluate comparisons and (arg)min

• Python SDK

• Features under development
• NodeJS SDK

• Matrix arithmetic library

61

MAIN RESOURCES AND LINKS FOR OPENFHE

• OpenFHE design paper: https://eprint.iacr.org/2022/915

• OpenFHE website: https://openfhe.org

• ReadTheDocs documentation for OpenFHE:
https://openfhe-development.readthedocs.io/en/latest/

• OpenFHE development repository: https://github.com/openfheorg/openfhe-development

• OpenFHE github organization where various OpenFHE-dependent projects are housed:
https://github.com/openfheorg

• Community Forum for OpenFHE: https://openfhe.discourse.group/

https://eprint.iacr.org/2022/915
https://openfhe.org/
https://openfhe-development.readthedocs.io/en/latest/
https://github.com/openfheorg/openfhe-development
https://github.com/openfheorg
https://openfhe.discourse.group/

62

CKKS Examples in Python

63

STEP 1 – SET CRYPTOCONTEXT

from openfhe import *

mult_depth = 1
scale_mod_size = 50
batch_size = 8

parameters = CCParamsCKKSRNS()
parameters.SetMultiplicativeDepth(mult_depth)
parameters.SetScalingModSize(scale_mod_size)
parameters.SetBatchSize(batch_size)

Enable the features that you wish to use
cc = GenCryptoContext(parameters)
cc.Enable(PKESchemeFeature.PKE)
cc.Enable(PKESchemeFeature.KEYSWITCH)
cc.Enable(PKESchemeFeature.LEVELEDSHE)

64

STEP 2 – KEY GENERATION

Generate a public/private key pair
keys = cc.KeyGen()

Generate the relinearization key
cc.EvalMultKeyGen(keys.secretKey)

Generate the rotation evaluation keys
cc.EvalRotateKeyGen(keys.secretKey, [1, -2])

65

STEP 3 – ENCRYPTION

Inputs
x1 = [0.25, 0.5, 0.75, 1.0, 2.0, 3.0, 4.0, 5.0]
x2 = [5.0, 4.0, 3.0, 2.0, 1.0, 0.75, 0.5, 0.25]

Encoding as plaintexts
ptx1 = cc.MakeCKKSPackedPlaintext(x1)
ptx2 = cc.MakeCKKSPackedPlaintext(x2)

Encrypt the encoded vectors
c1 = cc.Encrypt(keys.publicKey, ptx1)
c2 = cc.Encrypt(keys.publicKey, ptx2)

66

STEP 4 – EVALUATION

Homomorphic additions
c_add = cc.EvalAdd(c1, c2)

Homomorphic subtraction
c_sub = cc.EvalSub(c1, c2)

Homomorphic scalar multiplication
c_scalar = cc.EvalMult(c1,4)

Homomorphic multiplication
c_mult = cc.EvalMult(c1, c2)

Homomorphic rotations
c_rot1 = cc.EvalRotate(c1, 1)
c_rot2 = cc.EvalRotate(c1, -2)

67

STEP 5 – DECRYPTION

Decrypt the result of addition
precision = 8
print("Results of homomorphic computations:")
result = cc.Decrypt(c1, keys.secretKey)
result.SetLength(batch_size)
print("x1 = " + str(result))
print("Estimated precision in bits: " + str(result.GetLogPrecision()))

Decrypt the result of scalar multiplication
result = cc.Decrypt(c_scalar,keys.secretKey)

Decrypt the result of multiplication
result = cc.Decrypt(c_mult,keys.secretKey)

Decrypt the result of rotations
result = cc.Decrypt(c_rot1,keys.secretKey)
result = cc.Decrypt(c_rot2,keys.secretKey)

68

OTHER PYTHON EXAMPLES FOR CKKS

Examples listed in README.md of https://github.com/openfheorg/openfhe-python
• FHE for arithmetic over real numbers (CKKS):

• Simple Code Example
• Advanced Code Example
• Advanced Code Example for High-Precision CKKS
• Arbitrary Smooth Function Evaluation
• Simple CKKS Bootstrapping Example
• Advanced CKKS Bootstrapping Example
• Double-Precision (Iterative) Bootstrapping Example

• SVM examples: https://github.com/openfheorg/python-svm-examples
• Linear and polynomial kernel SVM models

• Regression inference/training examples: https://github.com/openfheorg/python-log-reg-examples
• Will be discussed in the next Hands-On sessions

https://github.com/openfheorg/openfhe-python
https://github.com/openfheorg/openfhe-python/blob/main/examples/pke/simple-real-numbers.py
https://github.com/openfheorg/openfhe-python/blob/main/examples/pke/advanced-real-numbers.py
https://github.com/openfheorg/openfhe-python/blob/main/examples/pke/advanced-real-numbers-128.py
https://github.com/openfheorg/openfhe-python/blob/main/examples/pke/function-evaluation.py
https://github.com/openfheorg/openfhe-python/blob/main/examples/pke/simple-ckks-bootstrapping.py
https://github.com/openfheorg/openfhe-python/blob/main/examples/pke/advanced-ckks-bootstrapping.cpp
https://github.com/openfheorg/openfhe-python/blob/main/examples/pke/iterative-ckks-bootstrapping.py
https://github.com/openfheorg/python-svm-examples
https://github.com/openfheorg/python-log-reg-examples

69

ML Applications and
FHE Challenges

70

ML Applications

71

SECURE GENOME-WIDE ASSOCIATION STUDIES

72

[1] Cho et al. 2018 Nat Biotechnol; [2] Jagadeesh et al. 2017 Science

73

74

MORE INFORMATION

• Source code: https://github.com/openfheorg/openfhe-genomic-examples

• PNAS Paper: https://www.pnas.org/content/117/21/11608

• PALISADE/OpenFHE Webinars
• https://www.openfhe.org/portfolio-item/secure-large-scale-genome/

• https://www.openfhe.org/portfolio-item/best-practices-for-building-efficient-homomorphic-encryption-solutio
ns/

https://github.com/openfheorg/openfhe-genomic-examples
https://www.pnas.org/content/117/21/11608
https://www.openfhe.org/portfolio-item/secure-large-scale-genome/
https://www.openfhe.org/portfolio-item/best-practices-for-building-efficient-homomorphic-encryption-solutions/
https://www.openfhe.org/portfolio-item/best-practices-for-building-efficient-homomorphic-encryption-solutions/

75

LOGISTIC REGRESSION TRAINING EXAMPLE

• Source code: https://github.com/openfheorg/openfhe-logreg-training-examples

• The examples were developed as part of the DARPA DPRIVE program

• The repository provides an implementation of logistic-regression model training and model inference on
the 2014 US Infant Mortality Dataset

• Logistic Regression Training is performed using Nesterov Accelerated Gradient Descent

• CKKS bootstrapping is performed after each iteration of logistic regression training

https://github.com/openfheorg/openfhe-logreg-training-examples

76

CNN INFERENCE

• We recently developed a CNN prototype for a model with 7 convolution layers and one fully connected
layer

• CNN inference of a CIFAR-10 image in OpenFHE takes several minutes

• The estimated runtime for an ASIC-accelerated implementation is about 3 orders of magnitude faster

77

COMMERCIAL ML CAPABILITIES BASED ON OPENFHE

• Duality Platform includes several ML/statistical capabilities based on CKKS in OpenFHE
• Logistic regression training

• Linear/ridge regression training

• Inference for GLM and gradient boosted trees

• Kaplan-Meier survival analysis

• Descriptive statistics

78

FHERMA Project

79

FHERMA: PLATFORM FOR FHE CHALLENGES

• FHERMA is an open platform for Fully Homomorphic Encryption (FHE) challenges, jointly developed by

Fair Math (formerly Yasha Lab) and the OpenFHE teams.

• The main goal of the project is to develop an open-source library of FHE components.

• Such a library can significantly simplify application development and accelerate the adoption of FHE.

• The initial focus is on components for Machine Learning and Blockchain applications.

• Launched on November 7, 2023

• URL: https://fherma.io/

• The winning solutions are published under the Apache 2.0 license

• No IP restrictions

• More details on the terms are available at https://fherma.io/terms

https://fherma.io/
https://fherma.io/terms

80

CHALLENGE TYPES

Black Box:

• Participants develop solutions according to the challenge requirements, process encrypted test data,

and submit to the platform only the serialized final ciphertext.

• Does not require submitting source code or any other data that reveals the details of the solution itself.

• The main criterion for evaluating and ranking solutions in this type of challenge is accuracy.

White Box:

• It is not possible to evaluate the performance of the solution based solely on the ciphertext. While the

Black Box type is suitable for many challenges, for others, it is crucial to obtain the most efficient

solution from a performance perspective. For these, the White Box type is available.

• Participants are required to submit the source code of their projects to the platform.

• The platform will compile the project and run tests to measure performance and accuracy.

• The main criteria for evaluating and ranking solutions are performance and accuracy.

• Solutions uploaded to the platform are confidential and are not available to other participants.

81

GOVERNANCE

Transparency

• One of the main priorities is a transparent and equal environment for all participants.

• We eliminated the human factor when assessing the results of the participants.

• At the end of each challenge, the winner's solution is published in open form.

Committee

• Gurgen Arakelov, Fair Math

• Elvira Kharisova, Fair Math

• Yuriy Polyakov, Duality

• Kurt Rohloff, Duality

82

INITIAL FHE CHALLENGES

• Matrix Multiplication
• Performing efficient multiplication of encrypted matrices

• Award: $3,000

• Sign Evaluation
• Efficient comparison using CKKS

• Award: $3,000

• Logistic Function
• One of main functions in machine learning

• Award: $5,000

83

Logistic Function Challenge

1. Challenge type: Black Box.
2. Encryption Scheme: CKKS.
3. Input Data:

○ Encrypted vector X
○ Cryptocontext
○ Public key
○ Multiplication key
○ Rotation key for indexes [1, -1, 2, -2]

Two tescases:

Testcase 1:

1. Batch size (Vector length): 2048
2. Maximum multiplicative depth: 7
3. Ring dimension: 32768
4. Scale Mod Size: 50
5. Element range: The range for each element

within the input vector is defined to be from -25 to 25.

Testcase 2:

1. Batch size (Vector length): 2048
2. Maximum multiplicative depth: 4
3. Ring dimension: 16384
4. Scale Mod Size: 50
5. Element range: The range for each element

within the input vector is defined to be from -25 to 25.

84

Logistic Function Challenge

Two tescases: Testcase 2 is more important because standard methods do not provide sufficient accuracy for it.

Testcase 1:

1. Batch size (Vector length): 2048
2. Maximum multiplicative depth: 7
3. Ring dimension: 32768
4. Scale Mod Size: 50
5. Element range: The range for each element

within the input vector is defined to be from -25 to 25.

EvalLogistic provides ~ 99.9% accuracy
Winner’s Solution provides ~ 99.9% accuracy

Testcase 2:

1. Batch size (Vector length): 2048
2. Maximum multiplicative depth: 4
3. Ring dimension: 16384
4. Scale Mod Size: 50
5. Element range: The range for each element

within the input vector is defined to be from -25 to 25.

EvalLogistic provides ~ 88.12% accuracy
Winner’s Solution provides > 96.5% accuracy

85

Logistic Regression Function Challenge

Testcase 2

86

NEW FHE CHALLENGES (TO BE ANNOUNCED EARLY NEXT WEEK)

• Encrypted image classification from the CIFAR-10 imageset (CKKS)

• RELU on encrypted data (CKKS)

87

THANK YOU

https://openfhe.org

contact@openfhe.org

https://palisade-crypto.org/

88

References

[BGV14] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic encryption without bootstrapping. ACM Transactions on
Computation Theory (TOCT), 6(3):1–36, 2014.

[Bra12] Z. Brakerski. Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP. In CRYPTO 2012. Pages 868 – 886.

[BV11] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-LWE and security for key dependent messages. In Annual cryptology
conference, pages 505–524. Springer, 2011.

[CGGI16]: I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds. In
Asiacrypt 2016 (Best Paper), pages 3-33.

[CGGI17]: I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster Packed Homomorphic Operations and Efficient Circuit Bootstrapping for TFHE.
ASIACRYPT (1) 2017: 377-408.

[CKKS17] J. H. Cheon, A. Kim, M. Kim, Y. Song, Homomorphic Encryption for Arithmetic of Approximate Numbers. In ASIACRYPT 2017. Pages 409–437.

[DM15]: L. Ducas and D. Micciancio. FHEW: bootstrapping homomorphic encryption in less than a second. EUROCRYPT 2015.

[FV12] J. Fan and F. Vercauteren. Somewhat Practical Fully Homomorphic Encryption. Cryptology ePrint Archive. Report 2012/144, 2012.
http://eprint.iacr.org/2012/144.

[GSW13]: C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. CRYPTO 2013.

[LMKCDEY13]: Y. Lee, A. Kim, D. Micciancio, R. Choi, Deryabin M., J. Eom, D. Yoo. Efficient FHEW Bootstrapping with Small Evaluation Keys, and
Applications to Threshold Homomorphic Encryption, EUROCRYPT 2023.

